In mathematics, a conic section (or just conic) is a curve obtained as the intersection of a cone (more precisely, a right circular conical surface) with a plane. There are a number of other geometric definitions possible. One of the most useful definitions, in that it involves only the plane, is that a conic consists of those points whose distances to some point—called a focus—and some line—called a directrix—are in a fixed ratio, called the eccentricity.

Traditionally, the three types of conic section are the hyperbola, the parabola, and the ellipse. The circle is a special case of the ellipse, and is of such sufficient interest in its own right that it is sometimes called the fourth type of conic section. The type of a conic corresponds to its eccentricity, those with eccentricity less than 1 being ellipses, those with eccentricity equal to 1 being parabolas, and those with eccentricity greater than 1 being hyperbolas. In the focus-directrix definition of a conic, the circle is a limiting case with eccentricity 0. In modern geometry, certain degenerate cases, such as the union of two lines, are included as conics as well.

In polar coordinates, a conic section with one focus at the origin is given by the following equation:

where e is the eccentricity and l is half the latus rectum. As in the figure, for